Lessons Plan

Lecturer 1: Jacopo Bertolotti

"Optical Wave Scattering"

Lesson plan

- 1. Scattering theory
 - Extinction, scattering and absorption
 - Cross sections
 - Scattering matrix and the Stokes parameters
 - The Optical theorem
- 2. Mie theory
 - Normal modes
 - The extinction paradox
 - Whispering gallery modes
- 3. Scattering from small particles
 - The Electrostatic Approximation
 - Non-spherical particles
 - Metal particles
- 4. Multiple scattering
 - Field multiple scattering and the Lambert-Beer law
 - Intensity multiple scattering and the diffusion approximation
 - Speckle and speckle correlations

Research seminar: "Imaging and tracking with speckle correlations"

Lecturer 2: Marian Florescu

"Hyperuniformity and Local Self-Uniformity in Photonic Systems: Fundamentals and Applications"

Lesson plan: to be announced

Research seminar: to be announced

Lecturer 3: Monika Fleischer

"Steering and analyzing interactions between single nanoantennas and emitters"

Lesson plan: to be announced

Research seminar: to be announced

Lecturer 4: Francesco Monticone

"Fundamentals of light interaction with complex media and metamaterials"

Lesson plan:

- 1. Fundamental principles: Causality, passivity, reciprocity, etc.
- 2. Physical constraints on the optical properties of (meta)materials
- 3. Fundamentals of effective medium theory
- 4. Unconventional electromagnetic wave propagation and scattering effects.

Research seminar: to be announced